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This study explored whether and bow teachers’ mathematical knowledge for
teaching contributes to gains in students’ mathematics achievement. The
authors used a linear mixed-model methodology in which first and third
graders’ mathematical achievement gains over a year were nested within
tedachers, who in turn were nested within schools. They found that teachers’
mathematical knowledge was significantly related to student achievement
gains in both first and thirvd grades after controlling for key student- and
teacher-level covariates. This vesult, while consonant with findings from the
educational production function literature, was obtained via a meastre
Jfocusing on the specialized mathematical knowledge and skills used in teach-
ing mathematics. This finding provides support for policy initiatives designed
to improve students’ mathematics achievement by improving teachers’ math-
ematical knowledge.

KeywoRrDs: educational policy, mathematics, student achievement, teacher
knowledge.

In recent years, teachers’ knowledge of the subject matter they teach has
attracted increasing attention from policymakers. To provide students with
“highly qualified teachers,” the No Child Left Behind Act requires teachers to
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demonstrate subject-matter competency through subject-matter majors, cer-
tification, or other means. Programs such as California’s Professional De-
velopment Institutes and the National Science Foundation’s Math-Science
Partnerships are aimed at providing content-focused professional develop-
ment intended to improve teachers’ content knowledge. This focus on subject-
matter knowledge has arisen, at least in part, because of evidence suggesting
that U.S. teachers lack essential knowledge for teaching mathematics (e.g.,
Ball, 1990; Ma, 1999) and because of evidence from the educational produc-
tion function literature suggesting that teachers’ intellectual resources signif-
icantly affect student learning.

Despite this widespread interest and concern, what counts as “subject-
matter knowledge for teaching” and how it relates to student achievement has
remained inadequately specified in past research. A closer look at the edu-
cational production function literature, for example, reveals that researchers
working in this tradition have typically measured teachers’ knowledge using
proxy variables, such as courses taken, degrees attained, or results of basic
skills tests. This stands in sharp contrast to another group of education schol-
ars who have begun to conceptualize teachers’ knowledge for teaching dif-
ferently, arguing that teacher effects on student achievement are driven by
teachers’ ability to understand and use subject-matter knowledge to carry out
the tasks of teaching (Ball, 1990; Shulman, 1986; Wilson, Shulman, & Richert,
1987). According to this view, mathematical knowledge for teaching goes be-
yond that captured in measures of mathematics courses taken or basic math-
ematical skills, For example, teachers of mathematics not only need to
calculate correctly but also need to know how to use pictures or diagrams to
represent mathematics concepts and procedures to students, provide students
with explanations for common rules and mathematical procedures, and ana-
lyze students’ solutions and explanations. Because teachers’ knowledge has
not been adequately measured, the existing educational production function
research could be limited in terms of its conclusions, not only regarding the
magnitude of the effect of teachers’ knowledge on student learning but also
regarding the kinds of teacher knowledge that matter most in producing stu-
dent learning.

As we discuss below, only a few educational production function studies
have assessed teachers’ mathematical knowledge directly and used this
measure as a predictor of student achievement (Harbison & Hanushek, 1992;
Mullens, Murnane, & Willett, 1996; Rowan, Chiang, & Miller, 1997). In most
other studies, tests of teachers’ verbal ability have been used to predict
achievement outcomes in reading and mathematics. As a result, despite con-
ventional wisdom that elementary U.S. teachers’ subject-matter knowledge
influences student achievement, no large-scale studies have demonstrated
this empirically (Wayne & Youngs, 2003). Nor is the situation ameliorated by
examining process-product research on teaching, in which both measurement
of subject-specific teaching behaviors and direct measurement of teachers’
subject-matter knowledge have been notably absent.
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To remedy this situation, we analyzed teachers’ scores on a measure of
mathematical knowledge for teaching. By “mathematical knowledge for teach-
ing,” we mean the mathematical knowledge used to carry out the work of
teaching mathematics. Examples of this “work of teaching” include explain-
ing terms and concepts to students, interpreting students’ statements and so-
lutions, judging and correcting textbook treatments of particular topics,
using representations accurately in the classroom, and providing students with
examples of mathematical concepts, algorithms, or proofs. Our previous work
has shown that a measure composed of multiple-choice items representing
these teaching-specific mathematical skills can both reliably discriminate
among teachers and meet basic validity requirements for measuring teach-
ers’ mathematical knowledge for teaching (Hill, Schilling, & Ball, 2004). Here
we used teachers’ scores on such a measure as a predictor of students’ gains
in mathematics achievement. An important purpose of our study was to
demonstrate the independent contribution of teachers’ mathematical knowl-
edge for teaching to student achievement, net of other possible measures of
teacher quality such as teacher certification, educational coursework, and
experience.

Framing the Problem

Since the 1960s, scholars and policymakers have explored the relationships
among teacher characteristics, teacher behaviors, and student achievement.
Yet, measures of teacher characteristics have varied widely, as have results
from investigations of these measures. In the following, we outline how dif-
ferent research programs have measured characteristics of teachers and teach-
ing and briefly summarize results of investigations in which these measures
have been used.

Teachers in the Process-Product Literature

In classroom-level education research, attempts to predict student achieve-
ment from teacher characteristics have their origins in what has been called
the process-product literature on teaching, that is, the large set of studies de-
scribing the relationship between teacher behaviors and student achievement.
Moving beyond using affective factors such as teacher appearance and enthu-
siasm to predict student achievement, scholars in this tradition took the view
that what teachers did in their classrooms might affect student achievement.
By the late 1970s, these scholars had accumulated substantial evidence that
certain teaching behaviors did affect students’ achievement gains. For exam-
ple, focusing class time on active academic instruction rather than classroom
management, student choice/game time, personal adjustment, or nonaca-
demic subjects was found to be a consistent correlate of student achievement
gains, as were presenting materials in a structured format via advance orga-
nizers, making salient linkages explicit, and calling attention to main ideas.
Brophy and Good (1986), Gage (1978), Doyle (1977), and others have provided
excellent reviews of these findings. As this research progressed, scholars also
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designed experiments in which teachers were trained in the behaviors indi-
cated by previous research and the academic performance of students in
trained teachers’ classrooms was compared with that of students in untrained
teachers’ classrooms. Good, Grouws, and Ebmeier (1983) conducted several
experiments in mathematics teaching and found that teachers who employed
such active teaching practices had students who performed better in terms
of basic skills but not problem solving.

Critiques of process-product studies ranged from methodological (e.g., an
excessive reliance on correlational data) to conceptual. Chief among the con-
ceptual critiques was the lack of attention given in these studies to subject mat-
ter and to how the subject being taught influenced the findings (Shulman,
1986). What worked well to increase student achievement in mathematics, for
instance, often did not work well to produce achievement gains in reading. Crit-
ics also pointed to the lack of attention to teachers’ subject-matter knowledge
as a predictor of effective teaching and learning.

Teachers in the Educational Production Function Literature

At the same time process-product researchers were examining the relationship
between classroom teaching behaviors and student achievement, other social
scientists were focusing on the relationship between educational resources and
outcomes. These studies, originating with the Coleman report (Coleman et al.,
1966), collectively have been called “educational production function” studies.
The main goal of this research program was to predict student achievement on
standardized tests from the resources possessed by students, teachers, schools,
and others. Key resources were seen to include students’ family background
and socioeconomic status (SES), district financial commitments to teacher
salaries, teacher-pupil ratios, other material resources, and teacher and class-
room characteristics (Greenwald, Hedges & Laine, 1996; Hanushek, 1981).
Researchers focusing specifically on teacher characteristics and student
achievement employed two approaches, sometimes in combination, to mea-
sure the resources teachers bring to classrooms.

In the first approach, information about teacher preparation and expe-
rience was collected and used as a predictor of student achievement. Key
measures here included teacher education level, certification status, number
of postsecondary subject-matter courses taken, number of teaching methods
courses taken, and years of classroom experience. By using such measures,
researchers implicitly assumed a connection between formal schooling and
employment experiences and the more proximate aspects of teachers’ knowl-
edge and performance that produce student outcomes. Reviews of this work
have disputed the extent to which variables such as teacher preparation and
experience in fact contribute to student achievement (Begle, 1972, 1979; Green-
wald et al., 1996; Hanushek, 1981, 1996), with conflicting interpretations rest-
ing on the samples of studies and methods used in conducting meta-analyses.
Beyond these methodological issues, however, another potential reason for
the inherent uncertainties in research findings might be that teacher prepa-
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ration and job experience are poor proxies for the kinds of teacher knowl-
edge and skill that in fact matter most in helping students learn academic
content.

Cognizant of this problem, researchers involved in conducting a smaller
number of production function studies have sought to measure teachers’
knowledge more directly by looking at teachers’ performance on certifica-
tion exams or other tests of subject-matter competence. By using such mea-
sures, these researchers implicitly assume a relationship between teacher
content knowledge, as measured by these assessments, and the kinds of
teaching performances that lead to improved student achievement. Studies
involving this approach typically reveal a positive effect of teacher knowledge,
as measured via certification exams or tests of subject-matter competence,
on student achievement (e.g., Boardman, Davis, & Sanday, 1977; Ferguson,
1991; Hanushek, 1972; Harbison & Hanushek, 1992; Mullens et al., 1996;
Rowan et al., 1997; Strauss & Sawyer, 19806; Tatro, Nielsen, Cummings, Kula-
ratna & Dharmadasa, 1993; for an exception, see Summers & Wolfe, 1977, for
reviews, see Greenwald et al., 1996; Hanushek, 1986; Wayne & Youngs, 2003).

However, although this is an important research finding, it cannot fully
describe how teacher knowledge relates to student achievement. One rea-
son is that the studies just described were conducted only in a limited num-
ber of academic subjects. For example, many studies have shown a relationship
of teachers’ verbal ability with gains in student achievement, but only three
have focused explicitly on both teachers’ and students’ mathematical knowl-
edge and students’ gains in mathematics achievement (Harbison & Hanu-
shek, 1992; Mullens et al., 1996; Rowan et al., 1997). Unfortunately, the design
of these studies limited the degree to which their findings could be general-
ized. Two of the mathematics studies cited, for example, took advantage of an
assumed greater variation in teacher preparation and ability in other countries
to estimate the effects of mathematics content knowledge on students’ math-
ematics achievement (Harbison & Hanushek, 1992; Mullens et al., 1996).
Although these analyses have been fundamental to building the theoretical
case for the importance of teachers’ mathematical knowledge in producing
student achievement gains in mathematics, the findings might not generalize
to U.S. contexts, where teacher preparation and knowledge might be both
higher and more uniform than is the case in less-developed nations. Other
production function studies also have been flawed by additional problems,
including aggregation bias, use of cross-sectional rather than longitudinal
data, and use of composite measures of teachers’ knowledge and students’
achievement.

From our perspective, however, the most pressing problem in production
function studies remains the imprecise definition and indirect measurement of
teachers’ intellectual resources and, by extension, the misspecification of the
causal processes linking teacher knowledge to student learning. Measuring
quality teachers through performance on tests of basic verbal or mathematics
ability may overlook key elements in what produces quality reaching. Effec-
tiveness in teaching resides not simply in the knowledge a teacher has accrued
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but how this knowledge is used in classrooms. Teachers highly proficient in
mathematics or writing will help others learn mathematics or writing only if
they are able to use their own knowledge to perform the tasks they must enact
as teachers, for example, to hear students, to select and make use of good
assignments, and to manage discussions of important ideas and useful work
on skills.

Yet, these additional content-related abilities specific to the work of
teaching have not been measured or included in the educational production
function models. Harbison and Hanushek (1992), for instance, administered
the same fourth-grade math assessment to both teachers and students, using
scores from the first group to predict performance among the second. Mul-
lens et al. (1996) used teachers’ scores recorded on the Belize National Selec-
tion Exam, a primary-school-leaving examination' administered to all students
seeking access to secondary school. Rowan et al. (1997) used a one-item
assessment of teacher knowledge; however, because no scaling or valida-
tion work was done on that item, little can be said about what and how well
it measures. While the results of each of these studies suggested the impor-
tance of teachers’ knowledge in producing student learning, we argue that
recent theoretical work on how teachers’ content knowledge matters in regard
to quality of reaching leads to a need for measures more closely attuned to
the mathematical knowledge used in teaching. We turn next to this literature
to elaborate our argument.

Teachers in the Teacher Knowledge Literature

Existing alongside production function research, an alternative literature
focused directly on teacher knowledge has begun to ask what teachers need
to know about subject-matter content in order to teach it to students. In this
research program, researchers propose distinguishing between the ways in
which academic content must be known to teach effectively and the ways
in which ordinary adults know such content. Shulman (1986, 1987) and col-
leagues (e.g., Wilson et al., 1987) launched this line of inquiry with their
groundbreaking work on what accomplished teachers know. In his 1986
presidential address delivered to the American Educational Research Asso-
ciation membership, Shulman proposed three categories of teacher subject-
matter knowledge. His first category, content knowledge, was intended to
denote “the amount and organization of knowledge . . . in the mind of teach-
ers” (p. 9). Content knowledge, according to Shulman, included both facts
and concepts in a2 domain but also why facts and concepts are true and how
knowledge is generated and structured in the discipline (Bruner, 1960; Schwab,
1961/1978).

The second category advanced by Shulman and his colleagues (Shulman,
1986; Wilson et al., 1987) was pedagogical content knowledge. With this cat-
egory, he went “beyond knowledge of subject matter per se to the dimension
of subject matter knowledge for teaching” (Shulman, 1986, p. 9, italics added).
The concept of pedagogical content knowledge attracted the attention and
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interest of researchers and teacher educators alike. Components of pedagog-
ical content knowledge, according to Shulman (1986), are representations of
specific content ideas, as well as an understanding of what makes the learn-
ing of a specific topic difficult or easy for students. Shulman’s third category,
curriculum knowledge, involves awareness of how topics are arranged both
within a school year and over time and ways of using curriculum resources,
such as textbooks, to organize a program of study for students.

Shulman and colleagues’ work expanded ideas about how knowledge
might matter to teaching, suggesting that it is not only knowledge of content
but also knowledge of how to teach content that influences teachers’ effec-
tiveness. Working in depth within different subject areas—history, science,
English, and mathematics—scholars probed the nature of the content knowl-
edge needed by teachers. In this program of work, comparisons across fields
were also generative. Grossman (1990), for example, articulated how teach-
ers’ orientations to literature shaped the ways in which they approached texts
with their students. Wilson and Wineburg (1988) showed how social studies
teachers’ disciplinary backgrounds (e.g., political science, anthropology, soci-
ology) shaped the ways in which they represented historical knowledge for
high school students. In mathematics, scholars showed that what teachers
would need to understand about fractions, place value, or slope, for instance,
would be substantially different from what would suffice for other adults
(Ball, 1988, 1990, 1991; Borko et al., 1992; Leinhardt & Smith, 1985).

Until now, however, it has not been possible to link teachers’ profes-
sionally usable knowledge of their subjects to student achievement. Most of
the foundational work on teacher knowledge has been qualitative in orienta-
tion and has relied principally on teacher case studies (e.g., Grossman, 1990),
expert-novice comparisons (Leinhardt & Smith, 1985), international compar-
isons (Ma, 1999), and studies of new teachers (Ball, 1990; Borko et al., 1992).
Although such studies have been essential in beginning to specify the mathe-
matical content knowledge needed by teachers, they have not been designed
to test hypotheses regarding how elements of such knowledge contribute to
helping students learn. As a result, although many assume, on the basis of the
educational production function literature, that teachers’ knowledge as re-
defined in the teacher knowledge literature does matter in producing student
achievement, exactly what this knowledge is, and whether and how it affects
student learning, has not yet been empirically established.

To address these issues, the Study of Instructional Improvement began in
1999 to design measures of elementary teachers’ knowledge for teaching math-
ematics. In response to the literature just reviewed, the study focused on pro-
ducing a survey instrument that could measure the mathematical knowledge
used in teaching elementary school mathematics (Ball & Bass, 2000, 2003). With
the phrase “used in teaching,” the developers of this instrument meant to cap-
ture not only the actual mathematical content that teachers teach (e.g., deci-
mals, area measurement, and long division) but also the specialized knowledge
of mathematics needed for the work of teaching. “Specialized” content knowl-
edge, as we define it, is mathematical knowledge, not pedagogy. It includes
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knowing how to represent quantities such as 1/4 or .65 using diagrams, how
to provide a mathematically careful explanation of divisibility rules, or how
to appraise the mathematical validity of alternative solution methods for a
problem such as 35 x 25. The desire to design survey measures of teacher
knowledge also led developers to construct items centered directly on the
content of the K-6 curriculum rather than items that might appear on a mid-
dle school or high school exam. Details on design, construction, and scaling
are presented below.

Method

In this section, we offer an overview of the present project, describing the
sample of students and teachers participating in the study and providing
information on data collection instruments and response rates. We also explain
the data analysis methods and model specifications used to estimate the rela-
tionship between teachers’ content knowledge for teaching and students’
gains in mathematics achievement.

Sample

The data presented here were derived from a study of schools engaged in
instructional improvement initiatives. As part of this study, researchers col-
lected survey and student achievement data from students and teachers in
115 elementary schools during the 2000-2001 through 2003-2004 school
years. Eighty-nine of the schools in this study were participating in one of
three leading Comprehensive School Reform programs—America’s Choice,
Success for All, and the Accelerated Schools Project—with roughly 30 schools
in each program. In addition, 26 schools not participating in one of these
programs were included as comparison schools. Program schools were
selected for the study via probability sampling from lists supplied by the par-
ent programs,’ with some geographical clustering to concentrate field staff
resources. Comparison schools were selected to match program schools in
terms of community disadvantage and district setting. Once schools agreed
to participate in the study, project staff approached all classroom teachers in
each school to encourage their involvement.

The sample of schools included in this study differed from a nationally
representative sample of schools in two ways. First, the sampling procedure
deliberately selected schools engaged in instructional improvement; second,
the sample was deliberately constructed to overrepresent high-poverty ele-
mentary schools in urban, urban fringe, and suburban areas. In particular,
whereas 1999 statistics showed that the average U.S. school served neigh-
borhoods where 13% of households were in poverty, the average school in
the present sample served neighborhoods where 19% of households were
in poverty (Benson, 2002). Moreover, 68% of the schools in this sample were
located in large and small cities, and no schools were located in rural areas.

Table 1 presents a comparison of the characteristics of students who
entered our study in kindergarten and the characteristics of a nationally rep-
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Table 1
Characteristics of Study of Instructional Improvement (Sll) Students
Versus Early Childhood Longitudinal Study (ECLS) Students

Characteristic SIT (%) ECLS (%)
Household income ($)
Less than 5,000 B 39
5,000-9,999 8.3 4.2
10,000-14,999 9.8 Yot/
15,000-19,999 955 6.8
20,000-24,999 9.0 7.9
25,000-29,999 8.4 6.4
30,000-34,999 7.6 7.0
35,000-39,999 6.6 5.6
40,000-49,999 Gl 10.3
50,000-74,999 18.9 20.0
75,000-99,999 5.6 95
100,000-199,999 4.3 8.8
200,000 or more 33 2.0
Mother’s educational background
Less than high school 18.3 14.3
High school diploma or equivalent 34.7 30.6
Some college or vocational school 34.9 317
Bachelor’s degree 9.3 14.6
Master’s degree or professional school 2.4 5.9
PhD or other advanced degree 0.4 1.4
Father’s educational background
Less than high school 14.4 1402
High school diploma or equivalent 34.1 26.0
Some college or vocational school 29.1 20.8
Bachelor’s degree 12,1 13.0
Master’s degree or professional school 4.3 57,
PhD or other advanced degree 1.0 352
Family structure
Biological mother and father present in household 522 63.8
Parent with stepparent or partner 6.5 95
Single parent 40.7 22:6
Student race
White 26.2 57.0
Black 47.5 16.4
Hispanic 14.3 18.9
American Indian/Alaskan Native 0.5 1.8
Asian or Pacific Islander Sl 3.4
Hispanic 16.4 20.6
Other 4.3 2.4

Note. Respective SII and ECLS sample sizes were as follows: household income, 1,616 and
21,116; mother’s educational background, 1,840 and 19,809; father’s educational backgrouind,
1,205 and 16,066; family structure, 1,900 and 18,962; and student race, 2,130 and 21,190.
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resentative sample of kindergarten students participating in the Early Child-
hood Longitudinal Study.? This table indicates that the kindergarten sample
in our study differed only slightly from the nationally representative sample
of kindergarten students, strongly suggesting that our sample included a suf-
ficient range of children, schools, and educational contexts to allow rea-
sonable statements about the contribution of teachers’ knowledge to student
achievement. In particular, there is little indication that student variables in
our sample were truncated in ways that would limit statistical inferences or
the ability to generalize our findings to a larger population of schools and
students. Our final sample of students included 1,190 first graders and 1,773
third graders.

Just as students in the sample were from varied social backgrounds,
schools in the sample were situated in many different policy and social envi-
ronments. For example, these schools were located in 42 districts in 15 states.
States varied in size, in average National Assessment of Educational Progress
scores, and in approaches to improving low-performing schools. While
3 states were scored as being among the least “interventionist” on Carnoy and
Loeb’s (2002) accountability index, another 4 states scored at the top of this
scale, indicating that they were pursuing strong state-level rewards and sanc-
tions to improve schools and student performance. The remaining 8 states
clustered near the less interventionist end of the scale. In one state and sev-
eral districts, participation in comprehensive school reform was mandatory
for schools performing below a certain level; in other states and districts, com-
prehensive school reforms were entirely optional.

The teacher sample for this study comprised 334 first-grade and 365 third-
grade teachers. These teachers were fairly typical of the elementary teaching
force, particularly in urban schools. Eighty-six percent of the teachers were
female; 55% were White, 23% were Black, and 9% were Hispanic. Approxi-
mately 90% of the teachers were fully certified, and the average teacher in the
sample had just over 12 years of teaching experience.

Data Collection Instruments

Data collection centered on two cohorts of students, one that entered the study
in kindergarten and was followed through second grade and another that
entered the study in third grade and was followed to the end of fifth grade. In
the case of each cohort, data were collected in two waves: In 2000-2001, infor-
mation was collected on first and third graders in 53 schools; in 2001-2002,
information was collected on an additional 62 schools. These two waves of
data collection were collapsed in the present analyses. In the remainder of this
article, we discuss the data on first- and third-grade students collected accord-
ing to this design, reporting instrument response rates separately for the two
waves of data collection.

A variety of survey instruments were used in collecting data. Data on
students, for example, were derived from two major sources: student assess-
ments and parent interviews. Student assessments were administered in the
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fall and spring of each academic year, for a maximum of six administrations
over the course of the study. The test forms and content of these assessments
are discussed in more detail subsequently. For now, we simply note that
trained project staff administered the assessments to cight randomly selected
students per class outside of the students’ usual classroom. Project staff also
contacted the parents or guardians of sampled students once by telephone
to gather information about students’ academic history, parent/guardian
employment status, and other relevant home background variables. The
completion rate for the student assessment averaged 96% across the 2000-2001
and 2001-2002 school years." Completion rates for the parent interview were
85% and 76% in 2000-2001 and 2001-2002, respectively.

Teacher data were gathered from two main instruments, a log that
teachers completed up to 60 times during one academic year and an annual
questionnaire filled out during each year of the study. The log was a highly
structured self-report instrument in which teachers recorded the amount of
time devoted to mathematics instruction on a given reporting day, the math-
ematics content covered on that day, and the instructional practices used to
teach that content. Teachers filled out logs for 6-week periods in the fall,
winter, and spring. Each log recorded 1 day of learning opportunities pro-
vided to one of the eight randomly selected target students for whom
achievement data also were collected. The response rates for log data were
quite high. Overall, 97% (2000-2001) and 91% (2001-2002) of eligible teach-
ers agreed to participate, and of the roughly 60 logs assigned to each par-
ticipating teacher, 91% were completed and returned in usable form to
project staff.

The mathematics log used here was subjected to extensive develop-
ment, piloting, and validation work. An observational study of a pilot ver-
sion of the log showed that agreement rates between teachers and trained
observers were 79% for large content descriptors (e.g., number, operations,
geometry) and 73% for finer descriptors of instructional practice (e.g.,
instruction on why a standard procedure works). In addition, observer and
teacher reports of time in mathematics instruction differed by less than
10 minutes of instruction for 79% of lessons (Ball, Camburn, Correnti, Phelps,
& Wallace, 1999).

Each year of the study, teachers were also asked to complete a ques-
tionnaire containing items about their educational background, involvement
in and perceptions of school improvement cfforts, professional develop-
ment, and language arts and mathematics teaching. Notably, this survey was
the source of items included in the content knowledge for teaching mathe-
matics measure. Table 2 shows that roughly three quarters of eligible teach-
ers returned completed teacher questionnaires each year; because most of
the questions not involving content knowledge (e.g., questions on certifica-
tion) remained the same on each teacher questionnaire, we were able to
construct many of the variables described here even when teachers did not
complete a questionnaire during the time period when their students were
under study.
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Table 2
Instrument Response Rates

2000-2001 2001-2002 2002-2003
Type of No. Rate No. Rate No. Rate
instrument completed (%) completed (%) completed (%)
Self-administered teacher 1,806 69 2969 73 2,861 76
questionnaire
Teacher log
Teacher sample: math log 172 97 519 91 —=
Completed logs: filtered” 8,216 91 28,560 91 —
Parent questionnaire 1,999 85 2,877 76 ==
Student instrument
Terra Nova: fall 1,247 97 3,690 96 4,638 95
Terra Nova: spring 2,220 96 4,897 96 4,595 97

“Data from this year not used in the present analysis.
"Log samples filtered by teacher refusal, student mobility, student ineligibility, and parental
refusal.

Measures

Having described major instruments and response rates, we next turn to the
specific measures used in the study. We begin by describing student achieve-
ment measures and then work outward to measures of family, teacher, class-
room, and school characteristics. Table 3 presents means and standard
deviations for the measures discussed.

Student Achievement

The measures of student achievement used here were drawn from CTB/
McGraw-Hill's Terra Nova Complete Battery (for spring of kindergarten), the
Basic Battery (in spring of first grade), and the Survey (in third and fourth
grades). Students were assessed in the fall and spring of each grade by proj-
ect staff, and scores were computed by CTB via item response theory (IRT)
scaling procedures. These scaling procedures yielded interval-level scores
from students’ raw responses. For the analyses conducted here, we computed
gain scores from these IRT scale scores. In the case of the first-grade sample,
we simply subtracted each student’s IRT mathematics scale score in spring of
kindergarten from their score in spring of first grade. For the third-grade sam-
ple (for which spring second-grade data were not available), we subtracted
the mathematics scale score in fall of third grade from the score in fall of
fourth grade. The result in both cases was a number representing how many
IRT scale score points students gained over 1 year of instruction.

The Terra Nova is widely used in state and local accountability and
information systems. Its use here, therefore, adds to the generalizability of
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our results in the current policy environment. However, the construction
of the Terra Nova added several complexities to our analyses. To start, data
from the mathematics logs indicated that the average student had a 70%
chance of working on number concepts, operations, or pre-algebra and alge-
bra in any given lesson (Rowan, Harrison, & Hayes, 2004). For this and
other reasons, our mathematics knowledge for teaching measure was con-
structed solely from items on these three “focal” topics. However, the Terra
Nova contains items from many additional content domains spread more
broadly across the elementary school mathematics curriculum. At Level 10
(spring of kindergarten), only 43% of Terra Nova items covered the focal
topics included on our teacher knowledge measure. At Level 12 (fall of
third grade), 54% of Terra Nova items aligned with the focal topics. As this
implies, there was an imperfect alignment between our measures of math-
ematical knowledge for teaching and measures of students’ mathematical
knowledge. It is well known that imperfect alignment of independent and
criterion measures in research on teaching can lead to underestimates of
effect sizes, suggesting that our empirical analyses probably underesti-
mated the effects of teachers’ content knowledge on student gains in math-
ematics achievement.,

Student mobility also affected the analyses reported here. By design,
the larger study from which our data were drawn collected student achieve-
ment data on eight randomly selected students per classroom. In this
design, students who left the classroom in one year were replaced through
random selection by students who entered the study in the next year. As a
consequence, neither the leavers nor the new students had complete data
across the time points included in the analyses reported here, and this
produced sample attrition. In particular, as a result of student mobility,
complete data were available for only 3.9 students per classroom in the
first-grade sample (largely because mobility is typically high in kinder-
garten and first grade) and 6.6 students per classroom in the third-grade
sample. Available data showed that first graders who left the study scored
7 points lower on the spring kindergarten Terra Nova than did those with
complete data across both time points; for third graders, the correspond-
ing difference was 6 points. Comparisons also showed that African Amer-
ican and Asian students left the study at higher rates than other students.
However, the available data suggest that student attrition was unrelated to
teachers’ scores on the main independent variable of interest here: teach-
ers’ mathematical knowledge for teaching. For example, in the third grade,
the difference in teacher knowledge scores in the case of students who left
and those who stayed was not significant, £2058) = 0.282, p > .5. The lack
of relationship between student mobility and teacher knowledge scores
suggests that our estimates of teacher knowledge effects on student
achievement gains are not subject to a significant amount of selection bias
owing to student mobility.

Another problem caused by missing data can occur when the standard
deviations of key variables are affected by the loss of portions of the student
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Table 3
Sample Means and Standard Deviations

Grade 1 Grade 3

Measure Description M SD n M SD n

Student
Average gain  Spring K—spring 57:68 3416881 90 30I AR 335 8] 775
1st and Fall
3rd—fall 4th
Initial math Initial math 466I6R AT IR ST O0RRS 6347 3 652 S 773
score Terra Nova
score
SES Family —-.01 74 1,190 -.05 66 1,773
socioeconomic
status
SES missing No data on family .07 26 1,190 23 42 73
socioeconomic
status
High absence  Coded as 1 if .05 .22 1,190 .04 09 1975
student’s
absence rate
exceeded
20%
Female Coded as 1 if Sl 50 1,190 S8 S0 ilys
student was
female
Minority Coded as 1 .68 47 1,190 .70 A6 773
if student was
non-Asian
minority
Teacher/classroom
Math methods  Math methods 256 095 334 2550001 365
and content and content
courses taken
Certified Coded as 1 if .89 31 334 .90 .25 365
teacher was
certified
Years of Years of experience 12 218015 33341285 880145 365
experience reported in
Year 2 of study
CKT-M Content knowledge .03 97 334 .05 .89 365
for teaching
mathematics
CKT-M missing Missing content 09 29 334 SIOSEE 30 305
knowledge for
teaching
mathematics
CKT-R Content knowledge A A R .07 .64 365
for teaching
reading
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Table 3 (Continued)
Sample Means and Standard Deviations

Grade 1 Grade 3
Measure Description M SD n M SD n
CKT-R missing Missing content .08 27334 .18 .38 365
knowledge for
teaching reading
Math lesson Average length in 55.6 134 334 503 144 365
length minutes of
mathematics
class
Teacher Percentage of logs 105 22 334 .06 .05 365
absence on which
rate teacher reported
own absence
Log data No information on .06 24 334 .10 23l 365
missing math lesson length,
teacher absence,
or student
absence
Percentage Percentage 47 32 334 .64 35 365
of minority of minority students in
a classroom,
initial time point
School
Household Percentage of .18 13 1415 519 .14 115
poverty households in
poverty

or teacher population. When this is the case, standardized regression coeffi-
cients can be biased (although unstandardized coefficients will not be much
affected). A comparison of the preattrition and postattrition samples in regard
to key student-level variables (SES, minority status, gender, initial test score)
showed that standard deviations varied by less than 5% in the case of initial
test scores and 1% or less for the other variables. Morcover, only 0.5% of first-
grade teachers and 4% of third-grade teachers had no complete student data,
suggesting that the standard deviations of teacher-level variables were not
affected a great deal by missing data.

Finally, while attrition was more common among students who per-
formed poorly on the initial pretest, students with test scores similar to those
who left the study did remain in the sample. As a result, we were able o
accurately estimate the growth of this “class” of lower-performing students,
particularly given the independence of probability of attrition and teachers’
content knowledge.
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Student Background

Several student background measures were included in this study. Students’
rate of absence from mathematics instruction was generated by aggregating
log reports of daily student absences to the student level. Just over nine logs
were recorded for the average first grader and eight logs for the average
third grader, and the reliability of this aggregated estimate in discriminating
among students’ rate of absence was .41. Using these data, we created a
dummy variable representing students whose absence rate exceeded 20%
(the reference category being students with less than a 20% absence rate).
Information on students’ gender and minority status was collected from
teachers and other school personnel at the time of student sampling. Infor-
mation on family SES was collected via telephone interviews with the par-
ents or legal guardian of the study students. The composite SES variable
represented an average of father’s and mother’s education level, their occu-
pation level, and family income.

Teacher Background and Classroom Characteristics

The primary source of data on teacher background variables was the teacher
questionnaire, from which information was used to construct measures of
teacher experience, certification, and undergraduate/graduate coursework.
These teacher background characteristics were straightforwardly represented
in our statistical models. For instance, teachers’ experience was reported as
number of years in service at Year 2 of the study. Although we had infor-
mation on noncertified teachers’ credentials (e.g., provisional or emergency
certification), too few teachers existed in each such category to include them
independently in statistical analyses; thus, our credential variable simply rep-
resented the presence (coded as 1) or absence (coded as 0) of certification.
Finally, teachers reported the total number of mathematics methods and
mathematics content courses taken as part of their preservice and post-
graduate higher education. Because reports of methods courses and reports
of content courses were highly correlated (r = .80), they led to multi-
collinearity in regression models estimated during both the first and third
grades. As a result, we formed a single measure combining reports of math-
ematics methods and content coursework. Unfortunately, this strategy did
not allow for an examination of the independent effects of methods and con-
tent courses, as is standard practice in the educational production function
literature (e.g., Monk, 1994).

We included three classroom variables in our analyses. First, information
on percentage of minority students was obtained by aggregating student char-
acteristics for each classroom. Second, to capture variation in the absolute
amount of mathematics instruction to which students were exposed, we devel-
oped a measure of average classroom time spent on mathematics using data
from teachers’ mathematics logs. The time measure excluded days on which
the student or teacher was absent. Finally, rate of teacher absence from math-
ematics lessons was calculated by aggregating logs to the teacher level.
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Content Knowledge for Teaching

Between 5 and 12 items designed to measure teachers’ content knowledge for
teaching mathematics (CKT-M) were included on each of the teacher ques-
tionnaires administered over the course of the study. Because this procedure
resulted in only a small number of CKT-M items being administered each year,
we constructed an overall measure of CKT-M using data from teachers’
responses over multiple questionnaire administrations. This strategy increased
both the number of CKT-M items on our measure and the content domains
sampled by the measure.

As mentioned, a key feature of our measure is that it represents the knowl-
edge teachers use in classrooms, rather than general mathematical knowl-
edge. To ensure that this was the case, we designed measurement tasks that
gauged proficiency at providing students with mathematical explanations
and representations and working with unusual solution methods. A more
detailed description of the work of designing, building, and piloting these mea-
sures has been provided by Hill et al. (2004). Aspects of the measures critical
to interpreting the results of the current study are discussed next.

The overall measurement project began with a specification of the do-
mains of teachers’ content knowledge for teaching that we sought to mea-
sure. As noted earlier, we limited item writing to the three most-often-taught
mathematical content areas: number concepts, operations, and patterns, func-
tions, and algebra. Next, we decided which aspects of teachers’ knowledge
to measure within these three topics. On the basis of a review of the research
literature, we originally chose to include items in two major domains: content
knowledge for teaching and knowledge of students and mathematics.
Because piloting revealed that items written in this second category did
not meet criteria for inclusion in a large and costly study,’ we selected
items from only the content knowledge domain to construct the measure
described here.

Once the domain map was specified, we invited mathematics educators,
mathematicians, professional developers, project staff, and former teachers to
write items. Writers cast items in a multiple-choice format to facilitate the scor-
ing and scaling of large numbers of teacher responses and produced items
that were not ideologically biased; for example, we rejected items in which a
“right” answer indicated an orientation to “reform teaching.” Finally, writers
strove to capture two key elements of content knowledge for teaching math-
ematics: “common” knowledge of content (i.e., the knowledge of the subject
a proficient student, banker, or mathematician would have) and “specialized”
knowledge used in teaching students mathematics.

Two sample items included on the teacher questionnaire illustrate this
distinction (see the Appendix). In the first, respondents are asked to deter-
mine the value of x in 10¥ = 1. This represents mathematics knowledge that
teachers use; students learn about exponential notation in the late elemen-
tary grades, and teachers must have adequate knowledge to provide instruc-
tion on this topic. However, many adults, and certainly all mathematicians,
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would know enough to answer this item correctly; it is “common” content
knowledge, not knowledge specialized for the work of teaching. Consider,
however, another type of item. Here teachers inspect three different ap-
proaches to solving a multidigit multiplication problem—35 X 25—and assess
whether these approaches would work with any two whole numbers. To
respond to this situation, teachers must draw on mathematical knowledge:
inspecting the steps shown in each example to determine what was done,
gauging whether or not this constitutes a “method,” and, if so, determining
whether it makes sense and whether it works in general. Appraising non-
standard solution methods is not a common task for adults who do not teach.
Yet, this task is entirely mathematical, not pedagogical; to make sound ped-
agogical decisions, teachers must be able to size up and evaluate the math-
ematics of these alternatives—often swiftly and on the spot. Other “specialized”
items asked teachers to show or represent numbers or operations using pic-
tures or manipulatives and to provide explanations for common mathemat-
ical rules (e.g., why any number can be divided by 4 if the number formed
by the last two digits is divisible by 4).

We believe that our measure of teachers’ content knowledge bridges the
literatures described earlier. It includes the common knowledge often mea-
sured within the educational production function literature, but it also uses
lessons from the case study literature on teachers’ knowledge to identify and
measure the unique skills and capabilities teachers might draw on in their
professional contexts. By employing this more job-specific measure in the
context of a study similar to an educational production function investigation,
we hoped to improve upon previous studies and examine untested assump-
tions about the relevance of elementary teachers” mathematical knowledge to
student achievement.

After a review of draft items by mathematicians and mathematics educa-
tors both internal and external to the project, we piloted items in California’s
Mathematics Professional Development Institutes. The average reliability for
piloted forms was in the low .80s, with very few misfitting items. Furthermore,
specialized factor analyses revealed the presence of a strong general factor
in the piloted items (Hill et al., 2004). Because we had a relatively large pool
(roughly 90) of piloted items, we could use information from this pilot test to
select items for inclusion in the current measure that had shown desirable mea-
surement properties, including a strong relationship to the underlying con-
struct, a range of “difficulty” levels, and a mix of content areas.

As part of these pilot investigations, we also conducted validation work
by (a) subjecting a subset of items to cognitive tracing interviews and (b) com-
paring items with the National Council of Teachers of Mathematics (NCTM)
standards to ensure that we had covered the domains specified in these stan-
dards. Results from the cognitive interviews suggested that in the area of con-
tent knowledge, teachers produced few (5.9%) “inconsistent” responses to
items, that is, instances in which correct mathematical thinking led to an incor-
rect answer or incorrect mathematical thinking led to a correct answer (Hill,
Dean, & Goffney, 2005). The content validity check of the entire piloted item
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set indicated adequate coverage across the number concepts, operations, and
patterns, functions, and algebra NCTM standards.

The measure of teachers’ content knowledge ultimately used in this
analysis included 30 CKT-M items on the Year 1 through Year 3 teacher ques-
tionnaires. We balanced items across content domains (13 number items,
13 operations items, and 4 pre-algebra items) and specialized (16 items)
and common (14 items) content knowledge. In practice, however, teach-
ers typically answered fewer than 30 items. One reason was that, by design,
only half of the sample responded to the first teacher questionnaire. Another
reason was that rates of missing data ranged between 5% and 25% on these
items.

We used IRT to manage missing data, create equal-interval scale scores,
and provide information on the reliability of our measures. Bayesian methods
were used to score teachers’ responses in a two-parameter IRT model.” When
a teacher failed to answer more than 25% of CKT-M items on a given ques-
tionnaire, we scored that teacher’s missing items as “not presented,” and the
teacher was not penalized for skipping items. Otherwise, missing data were
scored as incorrect. To confirm our findings, we rescored the data using ditf-
ferent methods (i.e., maximum likelihood) and accounted for missing data in
different ways (e.g., scored all missing data as not presented). Our results were
robust to these different methods of computing teacher scores. The reliability
of the resulting measure was .88. Finally, the CKT-M measure was calculated
for the entire teacher sample (first through fifth grade) as a standardized vari-
able (ie., M=0, SD=1).

In some of the statistical models discussed subsequently, we also included
a measure focusing on content knowledge for teaching reading (CKT-R). The
objective behind designing the CKT-R measure was much the same as with
the mathematics measure: to attend not simply to the knowledge that adults
use in everyday life (e.g., reading text) but also to the specialized knowledge
teachers use in classrooms (e.g., determining the number of phonemes in a
word). The two major content domains included on this form were knowl-
edge of word analysis—the process of helping students actually read printed
text—and knowledge of comprehension. The three major teaching domains
were knowledge of the content itself, knowledge of students and content,
and knowledge of teaching and content. This last category was not repre-
sented in the mathematical work but included items focusing on ways to
cenhance student learning of particular picees of text, remediate student prob-
lems with texts, and so forth. The CKT-R measure was constructed through
a process similar to that used in desjgning the mathematics measure: item
writing by reading educators, experts, and classroom teachers; pilot testing
in California; factor analyses; selection of items for inclusion on the study’s
teacher questionnaire that provided a balance across the domain map and max-
imized desired measurement qualities; and IRT scoring. In the present study,
we used a measure that combined all of the content and knowledge domains
and that had a reliability of .92. Details on the construction of this measure
have been provided by Phelps and Schilling (2004) and Phelps (2004).
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School Characteristics

The single school characteristic used in this model was household poverty,
or the percentage of households in poverty in the neighborhood census
tract where schools were located. This measure was constructed from 1990
census data.

Statistical Models and Estimation Procedures

Linear mixed models were used to estimate the influence of student, teacher,
and school characteristics on gains in student achievement. All analyses were
conducted with the PROC MIXED procedure in SAS. As described earlier, the
main dependent variable was student gain scores over 1 year of participation
in the study. The main advantage of using gain scores as opposed to covariate
adjustment models that regress pretest scores on posttest scores is that gain
scores are unbiased estimates of students’ academic growth (Mullens et al.,
1996; Rogosa, Brandt, & Zimowski, 1982; Rogosa & Willett, 1985). However,
gain scores can be subject to unreliability, and, as a result, readers are cautioned
that the effects of independent variables on the outcome measure are undoubt-
edly underestimated (Rowan, Correnti, & Miller, 2002).

We elected to exclude consideration of a number of factors from our
statistical models for simplicity of the results presented and discussion of
these results. One such factor was instructional practice, as reported on the
daily mathematics log. Another was the mathematics curriculum materials
used by each school, including whether the school was using the mathe-
matics program recommended by the school improvement program. A third
was the improvement program selected by the school. Although each of
these factors is a potentially important influence on student achievement,
results from initial models suggested that the effects of the factors on gains
in student achievement were complex; for instance, they interacted with stu-
dent background characteristics, as well as grade level. Notably, however,
participation in a Comprehensive School Reform program had little inde-
pendent main effect on students’ achievement gains, a finding that makes
sense given that the programs under study focused mainly on instructional
improvement in English language arts.

As discussed earlier, there were substantial amounts of student attrition
and missing data on key variables. First graders without spring-to-spring
data and third graders without fall-to-fall assessment data were necessarily
excluded from the analyses. Also, teachers were excluded from the analysis
if they did not return any of the three teacher questionnaires, thus providing
no information on their preparation for teaching, years of experience, or con-
tent knowledge for teaching mathematics. When teachers did return ques-
tionnaires but did not answer enough content knowledge for teaching items
to reasonably generate a person-level score, we imputed their score. This
resulted in roughly 10% of first-grade teachers and 20% of third-grade teach-
ers whose scores were adjusted via mean imputation. Mean mathematics
instructional time and absence rates for teachers who did not log their math-
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ematics instruction were imputed as well. Mean imputation is a standard
method for dealing with missing cases, but an unfortunate side effect is that
the actual covariances between variables are not maintained in the data set.
To correct for this problem, we included an indicator (dummy) variable
indexing whether or not a teacher had missing data on a given variable.
In summary, this study involved a number of data issues, including the
small number of students with complete data within each classroom, missing
data on many variables, lack of complete alignment between the teacher and
student mathematics assessments, and student attrition. As discussed, the first
three problems would tend to bias results conservatively (i.e., against finding
positive teacher/classroom effects in our models). For example, limited num-
bers of students per classroom can make it more difficult to reliably discrim-
inate academic growth rates across classrooms, in turn making it more difficult
to detect the effects of classroom variables on student achievement gains. Use
of mean imputation procedures can reduce the amount of observed covaria-
tion between inputs and outcomes, making effects more difficult to detect.
And lack of perfect alignment across student and teacher assessments pro-
duces additional unreliability in analyses (for arguments about overlap, see
Barr & Dreeben, 1983; Berliner, 1979; Leinhardt & Seewaldt, 1981). As we
have shown, the fourth problem (student attrition) seems neutral with respect
to bias, especially since there was little evidence of selection bias in the data.

Results

Table 3 shows prestandardization sample means and standard deviations for
the variables included in this analysis. Several of these descriptive statistics
have substantive interpretations and implications. As can be seen in Table 3,
the average first grader gained nearly 58 points on the Terra Nova scale, while
the average third grader gained 39 points. This is a two-grade snapshot of the
often-observed trend toward decelerating academic growth rates in longitu-
dinal studies of student achievement. Other interesting findings were that 5%
of first graders and 4% of third graders were reported as absent more than
20% of the time. Finally, roughly 70% of the students in our study sample were
non-Asian students of color.

Several teacher-level descriptive statistics also stand out. Because we
averaged reports of mathematics methods and content courses, and because
teachers reported such courses as ranges (¢.g., 1-3 courses or 4-6 courses),
the measure representing these reports has no easy substantive interpreta-
tion. However, it may help readers to know that 12% of teachers reported
never having taken a mathematics content or methods course, 15% reported
taking between one and three such courses, and 27% reported taking between
two and six courses. In many colleges of education, mathematics methods
courses are taught by education school faculty and typically cover the use of
manipulatives and other representations for content, problem solving, class-
room organization, and designing and teaching math lessons. Mathematics
content courses are often taught by a member of the mathematics department
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and usually cover mathematical topics in the K—6 curriculum: whole numbers
and fractions, place value, probability, geometry, combinatorics, and, often,
problem solving. Some other required mathematics content courses may be
the same as those taken by mathematics majors.

Nearly 90% of the teachers in the sample were certified, and the average
teacher was in her or his twelfth year of teaching. The average teacher reported
spending just under an hour per day on mathematics instruction: 55.6 minutes
for first graders and 50.3 minutes for third graders. These figures included days
on which mathematics was not taught owing to an assembly, field trip, test
preparation, or similar interruption. Finally, the average teacher reported being
absent on 5% to 6% of logging days, or roughly 9 days of a 180-day school
year. This figure doubtlessly included professional development days in addi-
tion to other absences.

The household poverty variable showed that roughly one in five house-
holds in the neighborhoods surrounding the schools included in this study
were below the poverty line. Inclusion of the household poverty variable in
these analyses was intended to capture the additional effect of poverty con-
centration within schools on student achievement net of students’ SES.

Tables 4 and 5 show the correlations among the teacher preparation,
experience, and CKT-M variables. The size and strength of these relation-
ships were similar at the two grades assessed, and several relationships stood
out. Note first the modest positive correlations of years of teaching experi-
ence with certification and with methods and content courses. This is con-
sistent with the observation that teachers continue to take mathematics
methods and content courses as they continue in their careers and with the
fact that uncertified teachers are less experienced than certified teachers. In
contrast, note that our measures of teachers’ mathematical content knowl-
edge for teaching was not significantly correlated with any of the teacher
preparation or experience variables at Grade 1 and showed only a very small
correlation with teacher certification at Grade 3. We cannot draw any firm

Table 4
Correlations Among Teacher Preparation, Experience,
and Mathematical Knowledge for Teaching: First Grade

Math
Methods Years of
Variable and content Certified experience CKT-M CKT-R
Math methods and — 10 .18* .00 -.07
content

Certified — 208 .07 .04
Years of experience — .00 .01
CKT-M i 38w
CKT-R e

*p< .05. **p < .001.
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Table 5
Correlations Among Teacher Preparation, Experience,
and Mathematical Knowledge for Teaching: Third Grade

Math
methods Years of
Variable and content Certified Experience CKT-M CKT-R
Math methods and — .03 A Os -.08 -.05
content
Certified — A5 Al .02
Years of experience — -.09 .05
CKT-M == Yoy
CKT-R —

*p < .05. **p < .001.

conclusions about causation from these correlations, but this pattern of
tindings suggests that neither ensuring teacher certification nor increasing
teachers’ subject-matter or methods coursework (two common approaches
to improving teacher quality) ensures a supply of teachers with strong con-
tent knowledge for teaching mathematics. Finally, teachers’ CKT-M and
CKT-R measures were correlated, but not as strongly as one might expect:
.39 and .37 in the first and third grades, respectively.

Table 6 presents the results of unconditional models that decomposed
variance in student gain scores into that residing among schools, among
teachers within schools, and among students within classrooms. The largest
amount of variance (85% in the first grade and 90% in the third) resided
among students within classrooms. This result is in line with findings from
other studies, and it included not only the influence of native intelligence,
motivation, behavior, personal educational history, and family support for
educational outcomes but also variance due to errors in measurement. Given
the large amount of variance within classrooms, only a small amount of the
remaining variance could reside among teachers: roughly 8% for first grade
and 2% for third grade. Again, this estimate is probably artificially low because
of unreliability in measurement of student achievement and student gains in

Table 6
Variance Components

Component Grade 1 Grade 3
Teachers 99.2 24.4
Schools 77.4 79.3
Residual 1,028.3 990.27
Total 1,204.9 1,093.97
Akaike information criterion 11,774.8 17,386.3
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Table 7
Student Gain Score Models

Model 1 Model 2
Measure Grade 1 Grade 3 Grade 1 Grade 3
Intercept 57.6 505 57.6 30.3
(@) (0.97) (1.31) 0.97)
Student
Initial math score —19.5%* 1AL —19.5%** —17.1***
@21 (0.84) (1.21) (0.84)
SES 3 06 2.13% 3.95% 2.12%*
(0.94) (0.76) (0.94) (0.76)
SES missing 0.15 —1.80* 0.15 =il
0.72) (0.73) 0.73) (0.73)
Female -.55 1.80** —-0.56 1L 7A%k
0.87) 0.70) 0.87) (0.69)
Minority —4.15%* -1.86 —4.14%* -1.84
(1.43) (1.15) (1.43) 1.15)
High absence =1.51 —0.74* -1.51 —0.74*
(0.88) (0.38) (0.88) (0.38)
Teacher/classroom
Math methods and 0.53 1.64 0.55 1.70
content (1.00) (0.92) (1.0D) (0.92)
Certified 0.23 —0.34 0.24 -0.33
(0.89) (0.73) (0.90) (0.72)
Years of experience 0672 1.02 0.72 0.95
(1.14) (0.64) (1.15) (0.66)
Background variables -0.22 —-0.61 -0.21 —0.57
missing (0.96) (0.81) (0.95) (0.80)
CKT-M 2.20% 23 20 2% 1.96**
0.9 0.75) (1.00) .77
CKT-R 0.26 0.82
(1.18) (0.87)
CKT-M missing —0.64 —0.31 —0.64 -0.22
1925) (1.00) a.27) (1.02)
Math lesson length —-0.11 15775 —0.11 1182
(1.04) (0.87) (1.05) (0.88)
Teacher absence rate -1.01 -0.37 —1.00 —-0.36
(0.92) (0.88) (0.94) (0.88)
Log data missing —1.80* 0.75 ikl 0.70
(0.91) (0.81) 0.9D) (0.83)
Percentage of class 2.29 -2.22 2.34 -2.20
minority @ 37) (1.28) (1.41D) (1.28)
School
Household poverty —1.60 -1.59 —-1.60 —1.64
(1.33) (1.02) (1.33) (1.02)
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Table 7 (Continued)
Student Gain Score Models

Model 1 Model 2
Measure Grade 1 Grade 3 Grade 1 Grade 3
Variance components
Teacher 80.63 13.8 84.6 14.7
School 82.40 53.2 79.88 52.6
Residual 730.89 745 730.65 T7411
Akaike information 11,342.4 16,836.0 11,340.1 16,833.6

criterion

*p<.05. *p< .01 **p< .00l
Note. Values are coefficients from our three-level mixed models predicting first- and third-
grade mathematics gains. Values in parentheses are standard errors for the coefficients.

achievement, as well as the small number of students per classroom. To deter-
mine whether teacher-level effects could be further modeled, we conducted
a likelihood ratio test of the variance components; this test rejected the null
hypothesis that there was no meaningful variance among teachers. Finally,
6% and 7% of the variance was among schools in the first and third grades,
respectively.

Table 7 shows the estimates derived from the two statistical models esti-
mated for first- and third-grade data. All independent variables were standard-
ized before entry into these analyses, making coefficients easily interpretable as
the effect of a one-standard-deviation increase in each independent variable on
gains in students’ IRT mathematics scale score over a 1-year interval. Student-
level variables, which remained the same in both statistical models, were the
strongest predictors of gain scores according to this metric. Initial mathemat-
ics Terra Nova scores, for example, were strongly and negatively related to
gain scores. In other words, students who performed well at the initial assess-
ment tended to regress to more average performance on the second assess-
ment. Family SES was also a strong predictor of gain scores; for every
one-standard-deviation increase in SES, students gained an additional 2 to 4
points. The missing family SES variable was not related to student gains in
first grade but was negatively related to student gains in third grade, when
the proportion of missing SES data was higher. This suggests that third-grade
students in families who did not respond to the telephone interview gained
less over the course of the year.

In third grade, female students showed a gain of nearly 2 points more
than male students, but there were no gender effects in first grade. Non-Asian
minority students had lower gain scores in the first grade and, more margin-
ally (p=.11), in the third grade. Students who were absent on more than 20%
of days (high rate of absence) also gained less than students with lower
absence rates in the third-grade model; this effect was close to significant (p <
.10) in the first-grade model as well. Although these models were not fully
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enough specified to explore the subtle effects of race, culture, and SES on stu-
dent achievement, the results are consistent with other research in this area
(Lee & Burkam, 2002; Phillips, Brooks-Gunn, Duncan, Klebanov, & Crane,
1998). Thus, we are satisfied that key student covariates were captured,
thereby allowing the teacher-level modeling we discuss next.

Teachers’ content knowledge for teaching mathematics was a significant
predictor of student gains in both models at both grade levels. The effect was
strongest in Model 1, wherein students gained roughly two and a quarter
points on the Terra Nova for every standard deviation difference in teachers’
mathematics content knowledge. Expressed as a fraction of average monthly
student growth in mathematics, this translates to roughly one half to two
thirds of a month of additional growth per standard deviation difference on
the CKT-M variable. CKT-M was the strongest teacher-level predictor in these
models, exhibiting more of an effect than teacher background variables and
average time spent on mathematics instruction each day. In third grade its
effect size rivaled that of SES and students’ ethnicity and gender, while in the
first-grade models the effect size was not far off. This suggests that knowl-
edgeable teachers can positively and substantially affect students’ learning
of mathematics, and the size of this effect, at least in the present sample, is
in league with the effects of student background characteristics.

An important question is whether the effect of teachers’ content knowl-
edge on growth in student achievement is linear, that is, whether the gain
of slightly more than 2 points per standard deviation of teacher CKT-M is
constant across the range of teacher knowledge. Perhaps only the most
knowledgeable teachers deliver highly effective mathematics instruction;
alternatively, it may be that only the least knowledgeable teachers have any
effect on students’ mathematics achievement. To investigate this question,
we divided teachers into deciles according to their CKT-M score, with
the lowest decile (1) representing the least knowledgeable teachers. We
replaced the linear CKT-M measure in Model 1 with this new 10-category
demarcation of teachers, and the results—estimated student gains per CKT-
M decile—are shown in Figures 1 and 2. Teachers in the lowest two deciles
(0%—-20%) of the first-grade CKT-M distribution taught students who
gained, on average, nearly 10 fewer points than students in the highest
category, which was the referent. However, above the lowest two deciles,
there appeared to be little systematic relationship between increases in
teacher knowledge and student gains. A statistical difference of means test
(the SAS “Ismeans” test) confirmed that significant differences occurred
only between the lowest 20% of teachers and other categories.

In the case of the third-grade data (Figure 2), the significance test sug-
gested that teachers in the first three deciles (0%—30%) had a significant
impacted on their students’ achievement vis-a-vis the top four deciles. Yet
here the nonlinear effect was less pronounced. One possible explanation is
the difference in first- and third-grade content. Perhaps only the very lowest-
scoring first-grade teachers had difficulties teaching the content at this level,
whereas even moderately scoring third-grade teachers may have found the
more difficult third-grade content challenging to teach.
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Figure 1. Grade 1 student gains by teacher CKT-M.

Despite our success in identifying a positive relationship between math-
ematical knowledge for teaching and student gain scores, the possibility
remains that general knowledge of or aptitude for teaching, rather than
content-specific knowledge for teaching, produced this finding. We had no
measure of general knowledge or aptitude for teaching and thus could not
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Figure 2. Grade 3 student gains by teacher CKT-M.
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directly address this issue. However, we did include in our analyses a mea-
sure of content knowledge for teaching reading that was similar in intent
to the CKT-M measure but designed to measure teachers’ knowledge of
and ability to teach word analysis and reading comprehension. If the CKT-
R and mathematics measures both draw heavily on general knowledge of
teaching, they should be moderately to highly correlated and should share
the positive relationship to student achievement seen in Model 1. In Model
2, we included this CKT-R measure and found that although it was posi-
tively related to student gains in the first and third grades, it was not sta-
tistically significant. Furthermore, it had only a small effect on the absolute
size and significance of the CKT-M variable. This suggests that the effect of
teachers’ knowledge on student achievement is at least content specific and
that, in mathematics, it reflects more than simply general knowledge of
teaching.

Our models showed other significant or near-significant findings. For
example, the average length of a teacher’s mathematics lesson was signif-
icantly related to third-grade student gains, with a one-standard-deviation
increase in daily mathematics lesson length—about 14 minutes—yielding
an additional 1.8 points. This translates to roughly an additional 2 weeks
of instruction per year for a classroom that receives the additional 14 min-
utes per day. Teachers’ mathematics preparation (i.e., the average number
of content and methods courses they completed in preservice or graduate
training) positively predicted student gains in the third grade but was just
outside of traditional significance (p = .06). The effects of another com-
monly argued policy solution, teacher certification, also were insignificant
in this particular sample of teachers and students. Although certification
was mildly related to teachers’ knowledge of content in the third grade
(Table 5), it had no independent influence on student gain scores. This may
reflect a true null effect, or it could have occurred because noncertified
teachers had taken a comparable number of math methods and content
courses to the number taken by certified teachers (see Table 5). Thus, non-
certified teachers may have been en route to traditional certification or may
have been transferring to new schools from other states (Darling-Hammond,
Berry, & Thoreson, 2001) or mathematics-intensive professions. This find-
ing could also reflect the fact that certification requirements vary across the
states included in our study.

Years of teaching experience, measured linearly, showed no relationship
to first-grade student achievement and a marginally significant (p=.11) pos-
itive relationship in the third grade. Some studies, however, have suggested
that the teachers who negatively affect student achievement are those in the
first several years of their career. We created a dummy variable representing
teachers in their first or second years of teaching and entered it into the mod-
els in place of the linear measure. The significance of this variable in the
third-grade model did not change, but the measure of novice teachers did
become marginally significant in the first-grade model (b= -5.3, p < .10).
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We checked these models in several ways: adding and deleting variables
to determine model stability, using pre-on-post models rather than gain score
models,”® and creating dummy variables to check for linearity. The overall sig-
nificance of key variables held firm, and residuals were normally distributed.

Discussion and Conclusion

The analyses just described involve clear limitations, including the small sam-
ple of students, missing data, and a lack of alignment between our measure of
teachers’ mathematical knowledge and student achievement. Because many
of these problems would bias the effect size coefficients of our content knowl-
edge for teaching variable toward zero, however, we feel confident that the
positive effects observed in our analyses are robust and, if anything, underes-
timated. However, we are less confident in any borderline or null results, such
as those found for the teacher preparation measures. Therefore, we focus our
concluding discussion primarily on the effects of the content knowledge vari-
able on students” achievement.

We found that teachers’ mathematical knowledge for teaching positively
predicted student gains in mathematics achievement during the first and third
grades. We were modestly surprised to see this first-grade effect, since we had
expected the CKT-M measure to exhibit its effects mainly at grades involving
more complex content (e.g., at grade levels in which multidigit addition or
multiplication, functions, fractions, and decimals were being taught). That it
also had a positive effect on student gains in the first grade suggests that teach-
ers’ content knowledge plays a role even in the teaching of very elementary
mathematics content.

An important feature of our analyses was that we measured mathemat-
ical knowledge for teaching, not simply teachers’ computational facility or
course taking. Although scholars from John Dewey (1902) to Joseph Schwab
and Lee Shulman have observed that teachers’ responsibilities for teaching
specific types of subject matter require special knowledge of the content
being taught, the nature of this special knowledge has not been elaborated.
Consequently, it has been difficult to measure reliably or validly on a large
scale. In our work, we attempted to build on these scholars’ theories about
relationships of subject matter and pedagogy by designing a measure of teach-
crs’ mathematical knowledge for teaching, and we can report here that this
more task-sensitive measure is positively related to student achievement.

Our results modify interpretations of earlier studies exploring the effect
of teachers on student achievement (for summaries, see Begle, 1979; Green-
wald et al., 1996; Hanushek, 1996). For one, they confirm Shulman’s (1986)
important critique of the process-product literature, namely, that studying
teacher impact in light of subject-specific behavior is critical. Moreover, our
findings help envision a new generation of process-product studies designed
to answer questions about how teachers” mathematical behavior—in partic-
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ular, their classroom explanations, representations, and interactions with stu-
dents’ mathematical thinking—might affect student outcomes. Our results
also inform findings from the educational production function literature by
indicating that a direct measure of teachers’ content knowledge for teaching
trumps proxy measures such as courses taken or experience and by sug-
gesting that measures of teacher knowledge should be at least content spe-
cific or, even better, specific to the knowledge used in teaching children.

Our findings both support and challenge recent policy initiatives. If
successful, efforts to improve teachers’ mathematical knowledge through
content-focused professional development and preservice programs will
improve student achievement, as intended. Such programs include Califor-
nia’s Mathematics Professional Development Institutes, the National Science
Foundation/U.S. Department of Education's Math-Science Partnerships, and
many other local efforts throughout the United States. Yet, our results sug-
gest that those who may benefit most are teachers in the lowest third of the
distribution of knowledge and that efforts to recruit teachers into profes-
sional development and preservice coursework might focus most heavily
on those with weak subject-matter knowledge for teaching. However,
without ways to differentiate and select such teachers, and without strong
incentives for bringing these teachers into content-focused professional
development, the intended effects of these programs may be lost. Moreover,
without conceptual and analytic tools for examining whether and what
teachers learn from such professional development, efforts to develop the
quality and effectiveness of programs designed to improve teaching will be
impeded.

Another key question generated by our results concerns equity, namely
the intellectual resources available to students across race and SES (see Cohen,
Raudenbush, & Ball, 2003, for a discussion of such resources). In the first
grade, teachers’ mathematical knowledge for teaching in this data set was dis-
tributed fairly evenly across students at different SES levels, but there was a
negative relationship between student minority status (#=—16, p < .01) and
teachers’ mathematical knowledge for teaching. In the third grade, the rela-
tionship between student SES and teacher knowledge was significant (r= .11,
p < .05 in this data set, and the relationship between minority status and
teacher knowledge increased in comparison with first grade (= -.26, p <
.0001). These results are similar to those observed elsewhere with other sam-
ples of schools and teachers (Hill & Lubienksi, 2005; Loeb & Reininger, 2004).
This problem of inequitable distribution of teaching knowledge across differ-
ent socioeconomic and ethnic groups is particularly pressing if the relation-
ship of teachers’ mathematical knowledge to instructional quality is nonlinear,
as our analyses suggest. A portion of the achievement gap on the National
Assessment of Educational Progress and other standardized assessments might
result from teachers with less mathematical knowledge teaching more disad-
vantaged students. One strategy toward closing this gap, then, could be invest-
ing in the quality of mathematics content knowledge among teachers working
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in disadvantaged schools. This suggestion is underscored by the comparable
achievement effect sizes for teachers” knowledge and students’ SES.

Three additional lines of inquiry grow naturally from the studly described
here. The first calls for examining the effects of mathematics instructional
methods and curriculum materials (texts) on student performance. A key com-
ponent of such an analysis would involve examining interactions between
teacher knowledge and instructional methods/uses of texts. A second line of
inquiry should parse more precisely different theoretically and empirically
grounded distinctions in content knowledge for teaching and investigate their
relationships, separately and in combination, to student achievement. In the
analyses reported here, we did not make such distinctions, and it is possible
that effects may differ across types of knowledge (e.g., common knowledge,
specialized knowledge of content, knowledge of students and content, and
knowledge of content and teaching; sce Hill et al., 2004).

Finally, a third line of inquiry could focus on investigating whether and
how the instructional practices of mathematically knowledgeable and less
knowledgeable teachers differ. Teachers do not improve student learning
simply by scoring well on multiple-choice assessments such as ours. How-
ever, what knowledgeable teachers do in classrooms—or how knowing
mathematics affects instruction—has yet to be studied and analyzed. Docs
teachers” knowledge of mathematics affect the decisions they make? Their
planning? How they work with students, or use their textbooks? How they
manage students’ confusion or insights, or how they explain concepts? Pre-
vious research on teachers’ content knowledge suggests that knowledge-
able teachers may provide better mathematical explanations, construct
better representations, better “hear” students” methods, and have a clearer
understanding of the structures underlying elementary mathematics and
how they connect (e.g., Ball, 1993; Borko et al., 1992; Carpenter, Fennema,
Peterson, Chiang, & Loef, 1989; Leinhardt & Smith, 1985; Ma, 1999; Thomp-
son & Thompson, 1994). However, analyzing the practice of knowledge-
able teachers may also uncover new aspects of the mathematical knowledge
that matters for teaching: how mathematical and everyday language are
bridged, for example, or how representations are deployed or numerical
examples selected. Ongoing research on teaching, on students’ learning,
and on the mathematical demands of high-quality instruction can contribute
to increasing precision in our understanding of the role of content knowl-
edge in teaching.

APPENDIX

Examples of ltems Measuring Content Knowledge
for Teaching Mathematics

1. Mr. Allen found himself a bit confused one morning as he prepared to teach.
Realizing that 10 to the second power equals 100 (10> = 100), he puzzled about what
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power of 10 equals 1. He asked Ms. Berry, next door. What should she tell him? (Mark
[X] ONE answer.)

a) >0

)il

¢) Ten cannot be raised to any power such that 10 to that power equals 1
@) - =il

e) I'm not sure

2. Imagine that you are working with your class on multiplying large numbers.
Among your students’ papers, you notice that some have displayed their work in the
following ways:

Student A Student B Student C
35 35 55
YIRS, X 25 X 25!
25 175 25
75 +700 150
875 875 100
+.600
875

Which of these students would you judge to be using a method that could be used to
multiply any two whole numbers?

Method would work Method would NOT
for all work for all whole
whole numbers numbers I'm not sure
Method A 1 2 3
Method B 1 2 3
Method C 1 2 3
Notes

We thank Robert J. Miller, Geoffrey Phelps, Stephen G. Schilling, and Kathy Welch for
their assistance. We are responsible for any errors. The research reported in this article
was supported in part by the U.S. Department of Education (Grants OERI-R308A060003 and
OERI-R308B70003), the National Science Foundation Interagency Educational Research
Initiative (Grants REC-9979863 and REC-0129421), the William and Flora Hewlett Founda-
tion. and the Atantic Philanthropies. The opinions expressed are those of the authors and
do not reflect the views of the U.S. Department of Education, the National Science Foun-
dation, the Witliam and Flora Hewlett Foundation, or the Atantic Philanthropies.

'The Belize National Selection Exam measures students’ proficiency at 14 years of age,
the cquivalent in the United States of an end-of-cighth-grade exam.

“In the sampling technique used, school selection was based on geographic location,
year of entry into Comprehensive School Reform program, and an index of community dis-
advantage. The last criterion ensured comparable schools within each Comprehensive
School Reform program. For additional details on the sampling process, see Benson (2002).

“This table does not provide a comparison of the exact set of students in our analyses
with Early Childhood Longitudinal Study students; instead, the comparison involves all stu-
dents who were in kindergarten at the time our study began. Many, but not all, of these stu-
dents were part of the first-grade cohort described here. Also, students leaving the study were
replaced by randomly sampled new students, whose information is not included in Table 1.
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*We are grateful to the schools, teachers, and students participating in this study for
allowing collection of these data.

SBriefly, many of these items would lead to a “misfit” in item response theory models;
factor analyses indicated multidimensionality, in that some items drew on mathematics
knowledge, some on knowledge of students, and some on both jointly. Also, as a set, they
were too “casy” for the average teacher; cognitive tracing interviews suggested that teach-
ers’ multiple-choice selections did not always match their underlying thinking. All four
problems resulted in our projecting low reliabilities for the number of items that could be
carried on the Study of Instructional Improvement teacher questionnaire. We are continu-
ing to develop theory and measures in an effort to address these results.

*“Difficulty” refers to the relationship among items, differentiating between those that
are easier for the population of teachers as opposed to those that are more difficult. Ttem
difficulty was used to ensure that the Study of Instructional Improvement assessment incor-
porated both easier items, which would allow differentiation among lower-knowledge
teachers, and harder items, which would allow differentiation among higher-performing
teachers.

"Two-parameter models take into account both the difficulty of an item and the cor-
rectness of a response in scoring. Two teachers who both answer 10 items correctly, for
instance, may have different scores if one correctly answers more difficult items than the
other. Missing data in our sample made two-parameter models attractive because of this
feature. The results presented in Table 7 were similar with the one-parameter scoring method.

¥Results from covariate adjustment models were similar to those obtained with gains
models; CKT-M effect size and significance values did not change in the first-grade model
and increased in the third-grade model.
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